3.1081 \(\int \frac {A+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=80 \[ -\frac {2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (5 A+3 C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 C \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)} \]

[Out]

-2/5*(5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*C*s
in(d*x+c)/d/cos(d*x+c)^(5/2)+2/5*(5*A+3*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {4066, 3012, 2636, 2639} \[ -\frac {2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (5 A+3 C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 C \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Sec[c + d*x]^2)/Cos[c + d*x]^(3/2),x]

[Out]

(-2*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*C*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (2*(5*A + 3*C
)*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]])

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3012

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*Cos[e
+ f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)), Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]

Rule 4066

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[b^2, Int
[(b*Cos[e + f*x])^(m - 2)*(C + A*Cos[e + f*x]^2), x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {A+C \sec ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx &=\int \frac {C+A \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\frac {2 C \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}-\frac {1}{5} (-5 A-3 C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 C \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (5 A+3 C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}-\frac {1}{5} (5 A+3 C) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 C \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (5 A+3 C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.37, size = 73, normalized size = 0.91 \[ \frac {(5 A+3 C) \sin (2 (c+d x))-2 (5 A+3 C) \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 C \tan (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Sec[c + d*x]^2)/Cos[c + d*x]^(3/2),x]

[Out]

(-2*(5*A + 3*C)*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + (5*A + 3*C)*Sin[2*(c + d*x)] + 2*C*Tan[c + d*x]
)/(5*d*Cos[c + d*x]^(3/2))

________________________________________________________________________________________

fricas [F]  time = 0.66, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {C \sec \left (d x + c\right )^{2} + A}{\cos \left (d x + c\right )^{\frac {3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + A)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \sec \left (d x + c\right )^{2} + A}{\cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 11.17, size = 593, normalized size = 7.41 \[ \frac {2 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (20 A \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-40 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+12 C \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-20 A \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+40 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 C \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-10 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-8 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{5 \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x)

[Out]

2/5*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+
6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^3*(20*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-40*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+1
2*C*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/
2*d*x+1/2*c)^4-24*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-20*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+40*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*
x+1/2*c)^4-12*C*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(
1/2))*sin(1/2*d*x+1/2*c)^2+24*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+5*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-10*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2
+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-8*C*c
os(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/
2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \sec \left (d x + c\right )^{2} + A}{\cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

mupad [B]  time = 4.93, size = 87, normalized size = 1.09 \[ \frac {2\,A\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C/cos(c + d*x)^2)/cos(c + d*x)^(3/2),x)

[Out]

(2*A*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) +
 (2*C*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2
))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)/cos(d*x+c)**(3/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)/cos(c + d*x)**(3/2), x)

________________________________________________________________________________________